
16 CrossTalk—September/October 2016

SUPPLY CHAIN RISKS IN CRITICAL INFRASTRUCTURE

Lawrence Peters, Software Consultants International
Limited, Auburn, Washington, United States
Lecturer, Universidad Politecnica de Madrid, Madrid, Spain

Toward A
Better Software
Project Manager

Abstract. The software engineering profession has experienced several
decades of almost unnoticed successes and famous failures. Over that time, its
accomplishments have far exceeded what the founders of this profession could
have foreseen. One aspect of software engineering that has gone almost unno-
ticed is the necessity for competent software project managers. Recent studies
have shown that the software project manager plays a much more signicant role
in the success of software projects than previously thought. This article examines
the role software project managers play in the development of software systems,
explains why this has been largely overlooked, and proposes that the practice of
software project management has always been and continues to be critical to the
success of software projects today and into the future

Early in the evolution of the software engineering profession,
projects were, as compared with today’s efforts, relatively sim-
ple, standalone efforts to automate some aspect of a business
or government activity. But as time went on, these single-pur-
pose systems became integrated and evolved into complex in-
teractive systems operating in real time, simultaneously serving
the needs of thousands of users online. That complexity did not
occur overnight, but it occurred rapidly enough to overwhelm
software project managers who were largely untrained in
project management. Many had created their own approaches
to managing software projects, but even simple projects often
failed to meet budget and schedule constraints.

This caught the attention of NATO, resulting in the rst in-
ternational conference on software engineering [1]. While soft-
ware engineers were trained in a broad range of methods and
techniques [2] [3], software project managers were left alone
to cope with this increased demand for speed, ease of use,
security, and other system characteristics with the added pres-
sure to bring the project in on time, on budget, and sufciently
functional and reliable. Additionally, some people did not view
the role of the software project manager as fundamental to
successful software projects. Recognizing that the role of the
software project manager is critical to the successful execution
of a software project may be fundamental to the advancement
of the profession of software engineering.

Competent Software Project Managers
From the beginning of the software engineering profession,

it was assumed that “a cadre of competent project manag-
ers” existed to manage software projects, but they did not. [4]
In developing his book on software engineering economics,
Boehm had omitted software project management factors from
the “constructive cost model” (COCOMO) because he assumed
that “project management was uniform, constant, and good” [5]
when, in fact, it was not. The observation that software project
management has been uniform, not good and practically un-
changed since 1970 appears to be true today. [6]

The Impact of the Software Project Manager
Two decades ago, Weinberg showed that the impact of

the software project manager on a software project ex-

Figure 1: Relative effects of factors involved in software projects

Introduction
All signicant engineering efforts require someone to man-

age them. Fven from their simple beginnings, software develop-
ment efforts have needed someone responsible for ensuring
the work was completed satisfactorily. The common term for
the person responsible for such efforts is “project manager.”

CrossTalk—September/October 2016 17

SUPPLY CHAIN RISKS IN CRITICAL INFRASTRUCTURE

ceeded that of all other groups combined. He did this by
combining the various cost driver groups in COCOMO [7] .
See Figure 1 (based on Jensen’s “Don’t Forget About Good
Management”). [6]

That work seems to have gone unnoticed for many years.
More recently, a study by IBM [8] found that 54 percent of
project failures were attributable to poor project manage-
ment, while three percent were due to technical challenges.
In spite of these and other qualitative and quantitative results
highlighting the importance of the software project manager,
today’s software engineering curricula, conferences, publica-
tions and teaching position announcements rarely mention
software project management as a subject of interest. When
undergraduate and graduate software engineering curricula
do include software project management as a course, it is
frequently listed as optional.

In spite of the many cost overruns, delayed deliveries and
mediocre results of some software systems, others have
been successfully delivered by teams of software engineers
led by largely untrained software project managers. [9] The
problem today is that the increased complexity and impor-
tance of these software systems means that conducting
software development in a “business as usual” manner — i.e.,
with uncertain delivery dates, cost overruns, poor quality, and
poor maintainability — is likely to lead to a self-limiting future
in which new systems and system upgrades are avoided or
curtailed altogether. If the software engineering profession is
to have a successful future, it needs more well-trained, com-
petent software project managers. Perhaps more importantly,
software engineers need to be made aware of the importance
of the software project manager and the value software proj-
ect managers bring to software projects.

Improving the Status Quo
In software engineering, we are trying very hard to change

the status quo. However, the areas we are focusing on are
not those that can provide the highest return on investment.
For example, programming methods like Agile and Extreme
have improved many aspects of software engineering. But
as Weinberg observed [7] and, more recently, the work by
Gulla demonstrated, [8] these are at best secondary effects.
For example, from 1960 to 1990, the focus was on program-
mer productivity. It increased at a linear rate of just one
source line per programmer month per year. [6] We have no
reason to believe that the linear increase over that period
has changed signicantly since then. While that modest
increase is positive, it occurred during a period when dozens
of computer-aided software engineering tools, as well as
analysis, design and programming methods, were published
and adopted by the software engineering community. [2] It
should also be noted that producing large amounts of source
code has not always been the problem. Obviously, the big-
gest improvement in software engineering project perfor-
mance, and the highest leverage area, is software project
management. But how can this be accomplished?

A Better Software Project Manager and Software
Project Management

Effective software project managers are not born; they are
made through education, experience, mentoring and other
related means. Our profession’s lack of recognition of the im-
portance of software project management is reected in many
ways. For example, the Software Engineering Body of Knowl-
edge (SWEBOK) [10] treats software project management in
the same way it treats other, often esoteric, topics in software
engineering. If we really recognized the impact the software
project manager can have on a project, SWEBOK would devote
much more space to it or, perhaps due to its importance and
the signicant differences between software project manage-
ment and software engineering, software project manage-
ment should have its own standalone body of knowledge (e.g.,
SWPMBOK). [17] Recently, a software extension to the Guide
to the Project Management Body of Knowledge, (PMBOK®)
[12] was published in an attempt to remedy this situation. [13]
But it is an extension, not a standalone document that focuses
squarely on software project management. This extension
requires the user to continually reference PMBOK to obtain the
needed information — assuming that the information is present,
which it may not be because information is generalized and
covers a broad range of industries. A more specic discussion
of what software project managers need to know in order to be
successful has been developed and published. [14] Based on
this new reference, the extension does not completely address
the knowledge, methods, techniques, and data software project
managers need to understand in order to be successful.

Software project management has little to do with program-
ming and a great deal to do with what are commonly referred to
as “soft” skills (i.e., communication, stafng, motivating, coping
with complexity, risk management, and personnel issues) that
software project managers need in order to be successful.
The real question today is what resources — e.g., referential
documents, university training, and professional development
courses —exist to assist current and future software project
managers in acquiring the knowledge and skills they need to
be more consistently successful? Granted, not all software en-
gineering professionals may want to become software project
managers, but many will. When they do, they will need to know
what software project management is about.

The most important fact they need to accept is that software
project management does not involve the same domain of
technology as programming. It requires a different mindset. The
software project manager is not developing the software, but is
instead working with the development team to create a plan by
which the team will develop the software. The project man-
ager re-plans as needed, monitors progress, and reports the
project’s status to key stakeholders while working to remove
obstacles that prevent the software engineering team from
working at their highest performance level. It mostly involves
the personnel and business end of the software engineering
profession. Failure to accept this fact has probably contributed
signicantly to the number of software projects that have failed.

18 CrossTalk—September/October 2016

SUPPLY CHAIN RISKS IN CRITICAL INFRASTRUCTURE

in nature but is oriented toward organization,
planning, scheduling, controlling, stafng
and motivating. [19] [20] [21] Many software
engineers still believe that the software proj-
ect manager should be the most technically
astute member of the team. Their training
does not accurately portray what software
project managers do or how this role differs
signicantly from developing code. The
sports analogy of manager versus player is
an appropriate one, [22] but it is not often
conveyed in software engineering courses.
Training in this area will at least improve the
software engineers’ understanding of what
they are getting into should they pursue a
position in software project management.

• Software project managers. Most
software project managers are not trained in
appropriate management skills. [9] [21] This
leaves them with little or no basis for actions
and decision-making as managers of soft-
ware engineering teams. This has resulted
in the creation of a large number of “anti-
patterns.” An antipattern is a management
action taken to solve a problem that actually
makes things worse. [23] These are difcult
to remove from the manager’s lexicon of
problem solutions, since many were created
by the manager or suggested by a colleague
who also created antipatterns. These actions

corporations wrote an advisory against putting high perform-
ers into management. [16] [18] He pointed out that putting
the best at performing certain tasks into management was
not advisable. This is because doing so reduces the overall
performance of the group they were in, and this new manager
is likely to be frustrated by the non-technical problems that
he or she would be required to solve every day — the most
challenging of these being personnel-related problems. [9]
Compounding this phenomenon are the various perquisites
attached to being in management that can attract people into
management for the wrong reasons (e.g., better pay, a better
ofce, status within the company, a preferred parking space).
But this sage advice has been largely ignored by the corpo-
rate world. The result is, in part, what we have today. There-
fore, three groups must be educated:

—Software engineers. In most aspects, we are doing
a good job of training software engineers. They are be-
ing taught software design, quality-oriented programming
practices, testing methods and strategies, how to address
security issues, and nearly every other aspect of software
engineering. They are being exposed to new concepts and
nuances, many of which are being published at a phenom-
enal rate. However, we are failing to accurately communicate
the role of the software project manager to software engi-
neers. The role of software project manager is not technical

As one noted software professional observed, “Management,
not technology, determines success.” [15] Also, the educa-
tion side of this problem will help software engineers to better
understand the importance of software project management
and the value that software project managers bring to software
projects. But software project managers do not need to be
among the best software engineers in order to be effective.
[16] This is because the best software engineers often become
frustrated software project managers who have little patience
with those who are less procient than they are and may not
mentor others to reach their full potential. This often results in
a frustrated software project manager who reverts to being a
software engineer, leaving the project without a manager. The
dangers involved in putting high performers into management
were documented long ago, but the message has still not had
widespread acceptance. [17] [18]

Who Should be Educated?
If we look at companies engaged in software engineering

projects from a system-level point of view, the delivery side
is composed of software engineers, software project manag-
ers and senior managers. This last group, senior managers,
are the ones who decide who becomes a software project
manager and reviews their performance. A few decades ago,
a very successful chief executive ofcer of major international

Table 1: Differing perceptions of causes of project failure [27]

Senior Manager Rank Project Manager Rank Problem / Issue

1 10 Insufficient front end planning

2 3 Unrealistic project plan

3 8 Project scope underestimated

4 1 Customer/management changes

5 14 Insufficient contingency planning

6 13 Inability to track progress

7 5 Inability to detect problems early

8 9 Insufficient number of checkpoints

9 4 Staffing problems

10 2 Technical complexity

11 6 Priority shifts

12 11 Personnel not committed to plan

13 12 Uncooperative support groups

14 7 Sinking team spirit

15 15 Unqualified project personnel.

CrossTalk—September/October 2016 19

SUPPLY CHAIN RISKS IN CRITICAL INFRASTRUCTURE

can effectively sabotage a software project.
[21] One antipattern that demonstrates a
clear lack of understanding of person-
nel issues is a common belief relating to
software quality. More than one published
paper has tacitly assumed that producing
quality results is more costly than produc-
ing poor or mediocre results. [24] What this
concept ignores is the fact that everyone
wants to be associated with quality results
and is motivated to achieve them, [25] which
results in higher productivity. As one author
put it, “Quality is free.” [24] [26] There
are many other misconceptions related to
software development, but this one clearly
demonstrates both a misunderstanding of
what drives software engineers to excel and
the assumption of a negative impact without
data to support it. Since software will never
be perfect, the software project manager

Table 2: Value system differences between managers and non-managers [33]

Factor Manager’s Importance Rank Non-Manager’s Importance Rank

Salary 1 5

Job Security 2 4

Promotion/Growth Opportunities 3 7

Working Conditions 4 9

Interesting/Challenging Work 5 6

Personal Loyalty to Workers 6 8

Tactful Discipline 7 10

Appreciation for Work Done 8 1

Help with Personal Problems 9 3

Being in on things 10 2

of the list is what may be the most serious misconception on
the part of software project managers. In fact, people do not
work for money. Their motivation goes much deeper than that.
Research has determined that people work for self-fulllment,
self-realization, and other factors. [28] [29] [30] Money is not a
motivator in knowledge work. Money is a motivator in repetitive,
assembly line work like one would nd in a factory. The point is
that value systems differences between software project man-
agers and software engineers create a climate within which
communication is inhibited. This predictably lowers productivity.
Another signicant example is “appreciation for work done.”
Software project managers are often uzzled by the resignation
of a top performing software engineer who receives an ex-
traordinary salary increase. If the recipient did not view it as a
“thank you” for their efforts, the money would mean very little.
Thus, we have a “reward paradox” wherein the most expensive
reward is the least effective and the least expensive reward —
a simple “thank you” — is the most effective. [31]

• Almost any improvement in what we teach software proj-
ect managers will have a positive impact on projects.

• Senior managers. This group has been mostly ignored
by our educational efforts. Due to their position in their
respective companies, they tend to rely more on their own
beliefs and conclusions than facts and data. [32] Stated an-
other way, when at the lower levels of the power structure in
an organization, one bases their decisions almost solely on
facts and data. As one advances higher in the power struc-
ture, reliance on facts and data diminishes and decisions are
based almost solely on intuition. The group at the top, senior
managers, is responsible for making the most accomplished
software engineers into software project managers, often
with disastrous results. [9]

Compounding this situation is a natural communication gap
between senior managers and project managers. (Table 2) [33]
This may disappear as more software project managers get

working with the rest of the team plays a critical role in
determining whether the system is good enough to ship. In
addition to antipatterns, there are many sources of commu-
nication issues between the software project manager and
senior management — the people who put this person into
the position of software project manager. These issues have
been documented and are presented in Table 1. [27]

• Human resources professionals. In most rms, the path
to becoming a software project manager is neither clear nor
well documented. [9] This can result in software engineers
who wish to become software project managers being frus-
trated by the happenstance nature of such a transition, while
those who may not have sought to become software project
managers have this transition thrust upon them. Others
may be attracted by the perquisites but not really motivated
to pursue this change in their career path. [14] [21] These
circumstances have resulted in what we have today — soft-
ware project managers of varying quality, inconsistency in
the success of software projects, general lack of knowledge
of the role of a software project manager, and a lack of
recognition of their value to a project. [8] [9]

The Consequences of Our Inattention
In these situations, the software project manager often re-

verts to being a software engineer, effectively leaving the proj-
ect without a manager. This leads to predictable project failure.
A brief examination of the few software project manager
courses reveals their content is mostly focused on software de-
velopment, not on management issues such as personnel man-
agement, [9] negotiation, risk management, effective cost and
schedule estimating methods, communication, planning meth-
ods, and so forth. As an example of personnel issues, consider
this: software project managers and non-managers have very
different value systems that lead to signicant communication
issues. Table 1 [27] summarizes these issues. At the very top

20 CrossTalk—September/October 2016

SUPPLY CHAIN RISKS IN CRITICAL INFRASTRUCTURE

into senior management positions, but for now, it needs to be
contended with. What this group needs to accept is an over-
haul of the way in which people become software managers
and what perquisites (if any) are appropriate for such positions.

A Natural Communications Gap
A software project manager’s actions are based on his or

her value systems. These value systems have been document-
ed by different authors over several decades. [33] (See Table
2.) Note how different the values are between the two groups.
The values of each group have changed little over the years
and vary slightly from one researcher to the next. One area
that highlights misconceptions on the part of many software
project managers is salary. As a reward for work well done,
software project managers will award an outstanding software
engineer with either a salary increase or a bonus because sal-
ary is the manager’s most important value. Unfortunately, the
non-manager’s most important value is appreciation for work
done. This could be achieved via a simple “thank you” con-
veyed in private by the software project manager. [31]

Another challenge for software project managers is manag-
ing the differences in perceptions of what caused a project
to fail. In Table 1 we see several obvious sources of problems
for the software project manager. Remember, it is the senior
management team that will determine the software project
manager’s future with the company.

One example of the communication issues in this domain is
the perceived reason for project failure. The software project
manager lists the most serious issue causing project failure as
changes in the customer and/or the customer’s management
team. Changes of this sort are inevitable but are still listed
as causes of failure. Unfortunately, this is consistent with a
prevalent attitude regarding project failure, which is that much
of what causes a project to fail is ambiguous. This usually al-
lows the manager of a failed project to shirk responsibility for
the failure. [34] This has the effect of preventing the software
project manager from learning from failure. This phenomenon
may explain why software engineering seems to continue to
experience serious project cost and schedule overruns for so
many years — we do not learn from our failures.

Another important aspect of the contents of Table 2 relates
to the nature of these factors. Regardless of how they are
ranked, none are, strictly speaking, technical. They break down
into the following categories:

• Planning and scheduling. Contrary to the opinion of
some, [35] planning and scheduling are not the same activ-
ity. They are closely related, but are not the same. Planning
focuses on developing a list of tasks and subtasks to be
performed and who will perform them. Scheduling deals with
the order in which the tasks and subtasks must be per-
formed, the length of time each will take and the start and
end date of each. To most software project managers and

software engineers, planning and schedul-
ing are uncomfortable tasks. A quote by Sir
John Harvey Jones captures this discomfort:
“People don’t like to plan — planning is un-
natural — it is far more fun to just do. And
the nice thing about just doing is that failure
comes as a complete surprise, whereas if
you have planned, the failure is preceded by
a long period of despair and worry.”

• Controlling and tracking progress. A
concern most software project managers
have is runaway development. Unlike other
engineering professions (e.g., civil engineer-
ing), software engineers can begin develop-
ing with a plan, schedule, design or even a
set of requirements. This has caused many
software project managers to develop and
enforce a software development process
that includes project reviews, milestones and
GO/NO-GO decision points. “Earned value
management” [36] and “earned schedule”
[37] are often used in this regard.

• Personnel management and motivat-
ing. Most software project managers agree
that personnel-related tasks are the most
difficult to deal with. [9] There are many
reasons for this, including the fact that work
holds such an important place in the human
psyche [28] [29] [30] . In addition, high
technology workers like software engineers

CrossTalk—September/October 2016 21

SUPPLY CHAIN RISKS IN CRITICAL INFRASTRUCTURE

are motivated to work on projects that advance the state of
the art and provide them with talking points with colleagues
that indicate they are exceptionally skilled. [9] This creates
a particularly challenging situation for software project
managers, since it is unlikely that all software projects they
will manage — as well as the roles within those projects
— will advance the state of the art. Rotating teams among
projects can provide a means of ensuring that the software
engineers do not continually work on projects they consider
uninteresting and unchallenging.

• Personnel and team composition. Selecting the “right”
team members is not nearly as easy and straightforward as
it sounds. Creating a team of the best software engineers
does not often lead to successful project completion due
to a phenomenon known as “The Apollo Syndrome.” [38] It
refers to documented evidence that the most highly skilled
technical people rarely work together as a mutually support-
ive team. Even interviewing can be difcult due to company
policies, various labor laws and, sometimes, the belief
systems of potential candidates. This often leads software
project managers to select people who think the same way
the manager does. This results in a team that shares the
same mistaken beliefs about software project execution as
their project manager, which results in project failure. [19]

• Communications with team, client, senior managers. A
common complaint among clients of software engineering

cause it to “re.”
—Establishing a condence factor regarding the project’s

ability to withstand or overcome the risk if it res. [21]
—Complexity management. Accurately assessing how

complex the project is likely to be and working to address
challenges early on is another strategic approach to help
ensure project success. This process involves assess-
ing complexity via an inventory of complexity factors and
challenging each factor to see if it can be mitigated or
eliminated altogether. [21] [36] [40] [41]

This more or less holistic approach to the software project
management “problem” is a dramatic shift away from the
philosophy that technology will “win the day” and toward
a philosophy that taps into the incredible potential of the
people who are ultimately the foundation of the software
engineering profession.

Closing comments
The software engineering profession has tried to develop

and use technology as a solution to its project problems for
nearly 50 years, but the problems have persisted. Although
it may seem a bit risky, it is time for us to try a new ap-
proach: focusing on how software projects are managed
and, hence, how software engineers are managed. We have
little to lose and much to gain.

projects is a lack of communication. [36]
[21] Keeping the client up-to-date regard-
ing project status, issues currently being
addressed, accomplishments, and so forth
help establish a positive relationship be-
tween the client and the development team.
This results in an environment of collegial
cooperation. Unfortunately, this is currently
more often the exception than the rule. For
example, while a project plan is practically a
“pro forma” element of any project, many do
not include a communications plan. [38] [39]

• Risk management. Risk is frequently
viewed as something that just occurs unpre-
dictably, requiring the development team to
respond extemporaneously. This is a tactical
and not very effective view. Certainly, unfore-
seeable events may happen that threaten the
project and must be dealt with. However, there
are several methods that can be employed to
pre-emptively reduce the severity of risks early
in the project. [21] These include:

—Identifying factors that could jeopardize
the project.

—Assigning a potential monetary cost in
case it occurs (or “res”).

—Attaching a probability of occurrence to it.
—Setting aside a contingency fund to ad-

dress the risk if it fires. [21]
—Mitigating the risk by eliminating what could

22 CrossTalk—September/October 2016

SUPPLY CHAIN RISKS IN CRITICAL INFRASTRUCTURE

1. Nur, P. nd Rndell, B. (Editors). (1969, Jnury.) Softwre Engineering: Report on 
Conference Sponsored by the NATO Science Committee. Grmisch, Germny, 7 to 11
October, 1968, Brussels, Scientic Affirs Division, NATO.

2. Rico, D.F. Short History of Softwre Methods. Downloded off the web, August 2010.
Referenced with uthor’s permission.

3. Peters, L. (1983.) Softwre Design: Methods nd Techniques. Prentice-Hll, Englewood
Cliffs, New Jersey.

4. Schlumberger, M. (1991.) Softwre Engineering Mngement. Position pper in Proceed-
ings of the 13th Interntionl Conference on Softwre Engineering. 152-153.

5. Boehm, B. (1981.) Softwre Engineering Economics. Prentice-Hll, Englewood Cliffs, N.J.
486-487.

6. Jensen, R. (2000, August.) Don’t Forget About Good Mngement. CrossTlk, 30.
7. Weinberg, G. M. (1994.) Qulity Softwre Mngement, Vol. 3: Congruent Action, New York,

N.Y. Dorset House Publishing. 15-16.
8. Gull, J. (2012, Februry.) Seven Resons IT Projects Fil. IBM Systems Mgzine.
9. Ktz, R. (2013.) Motivting Technicl Professionls Tody. IEEE Engineering Mngement

Review, 2013, 41, (1), 28-37.
10. Bourque, P. & Firley, R.E. (2014.) Guide to the Softwre Engineering Body of Knowledge.

Version 3.0, IEEE Computer Society. Retrieved from www.swebok.org.
11. Moreno, A., Snchez-Segur, M-I, Medin-Dominguez, F., Peters, L. & Arujo, J. (2016,

My.) Enriching trditionl Softwre Engineering curricul with Softwre Project Mnge-
ment Knowledge. Interntionl Conference on Softwre Engineering Eduction nd
Trining (CSEET), Austin, Texs.

12. Project Mngement Institute, PMBOK®. (2013.) A Guide to the Project Mngement
Body of Knowledge. Fifth Edition. Project Mngement Institute, Newtown Squre,
Pennsylvni.

13. Project Mngement Institute. (2013.) Softwre Extension to the PMBOK Guide Fifth
Edition. Project Mngement Institute, Newtown Squre, Pennsylvni.

14. Peters, L. & Moreno, A. (2015, My.) Educting Softwre Engineering Mngers Revisited
– Wht Softwre Project Mngers Need to Know Tody. Interntionl Conference on
Softwre Engineering Eduction nd Trining (CSEET). Florence, Itly.

15. Cusumno, M. (2004.) The Business of Softwre: Wht Every Mnger, Progrmmer, nd
Entrepreneur Must Know to Thrive nd Survive in Good Times nd Bd. Free Press, New
York, N.Y.

16. Townsend, R. (1970.) Up the Orgniztion: How to Stop the Corportion from Stiing
People nd Strngling Prots, (commemortive edition). Knopf, New York, N.Y.

17. Chen, J. & Lin, L. (2004). Modeling Tem Member Chrcteristics for the Formtion of
 Multifunctionl Tem in Concurrent Engineering. IEEE Trnsctions on Engineering
Mngement, 15 (2), 111-124.

18. Townsend, R. (1984.) Further Up the Orgniztion: How to Stop the Corportion from
Stiing People nd Strngling Prots, (commemortive edition). Knopf, New York, N.Y.

19. Peters, L. (2008, My.) Getting Results from Softwre Development Tems. Microsoft
Press Best Prctices Series. Redmond, Wshington.

20. Kerzner, H. (2013.) Project Mngement: A Systems Approch to Plnning, Scheduling,
nd Controlling (11th ed.). New York, NY: John Wiley & Sons.

21. Peters, L. (2015, My.) Mnging Softwre Projects On the Edge of Chos – From
Antiptterns to Success. Softwre Consultnts Interntionl Ltd., Auburn, Wshington.
Kindle eBook.

22. Trim, T. (2012, September.) Mking  Trnsition from Technicl Professionl to …. IEEE
Engineering Mngement Review, Vol. 10, No. 3, 3-4.

23. Silv, P., Moreno, A. & Peters, L. Softwre Project Mngement: Lerning from Our
Mistkes. IEEE Softwre, Vol. 32, Issue 3, 40-43.

24. Crosby, P. (1980.) Qulity is Free. Signet, New York, N.Y.
25. Petre, M. & Dmin, D. (2014, November 14, 16–21.) Methodology nd Culture: Drivers of

Mediocrity in Softwre Engineering? Foundtions of Softwre Engineering Conference.
Hong Kong, Chin, 829-832.

26. Crosby, P. (1995.) Qulity is still free. McGrw-Hill, New York, N.Y.
27. Thmhin, H. Tem Ledership Effectiveness in Technology-Bsed Project Environments.

IEEE Engineering Mngement Review, 36(1), 165-180.
28. Herzberg, F. (1966.) Work nd the Nture of Mn. The World Publishing Compny,

Clevelnd, Ohio.
29. Mslow, A.H. (1971.) The Frther Reches of Humn Nture. Viking Press, New York, N.Y.
30. McClellnd, D.C. (1961.) The Achieving Society. Vn Nostrnd-Rheinhold, Princeton, N.J.
31. Grnt, A. & Gino, F. A Little Thnks Goes  Long Wy: Explining Why Grtitude Expres-

sions Motivte Prosocil Behvior. Journl of Personlity nd Socil Psychology 2010, Vol.
98, No. 6, 946-955.

32. McAfee, A. (2010, Jnury 7.) The Future of Decision Mking: Less Intuition, More
Evidence. Hrvrd Business Review.

33. Ntionl Study. (1993.) Ntionl Study of the Chnging Workforce. Published by the
Fmilies nd Work Institute, N.Y., N.Y.

34. Myers, C., Stts, B. & Gino, F. (2014, April 18.) ‘My Bd!’ How Internl Attribution nd
Ambiguity of Responsibility Affect Lerning from Filure. Hrvrd Business School Work-
ing Pper, 14-104.

35. McConnell, S. (2000, July/August.) The Softwre Mnger’s Toolkit. IEEE Softwre.
36. Fleming, Q. & Koppelmn, J. (2010.) Erned Vlue Project Mngement – Fourth Edition.

Project Mngement Institute. Newtown Squre, Pennsylvni.
37. Lipke, W. (2012, Jnury.) Erned Schedule. Retrieved from lulu.com.
38. Belbin, R. (1996.) Mngement Tems – Why They Succeed or Fil. Butterworth Heine-

mn, London.
39. Dow, W. & Tylor, B. (2008.) Project Communictions Bible. Wiley, New York, N.Y.
40. Mylor, H.R., Turner, N. W., & Murry-Webster, R. (2013, July/August.) How Hrd Cn It

Be? Reserch-Technology-Mngement, 45-51.
41. Chipulu, M., Neoh, J., Ojiko, U. & Willims, T. (2013.) A Multidimensionl Anlysis of

Project Mnger Competences. IEEE Trnsctions on Engineering Mngement, Vol. 60,
No. 7, 506-517.

REFERENCES

Dr. Lawrence (Larry) Peters has more than 40 years experience in software engineering as a software
engineer, instructor, project manager, and consultant. He has worked in the defense, aerospace, telecom-
munications, and other elds. His area of specialization is software project management. He has published
several papers and books focusing on the education, evaluation and importance of the software project
manager. He teaches software project management at the M.S. level in Spain via Skype and on-site short
courses on software project management.
ljpeters42@gmail.com

ABOUT THE AUTHOR

