
40 IEEE SOFTWARE  |  PUBLISHED BY THE IEEE COMPUTER SOCIETY  0 7 4 0 - 7 4 5 9 / 1 5 / $ 3 1 . 0 0  ©  2 0 1 5  I E E E

Editor: Rafael Prikladnicki
Pontifica Universidade Catolica 
do Rio Grande do Sul
rafael.prikladnicki@pucrs.br

Software Project 
Management
Learning from Our Mistakes

Pedro Silva, Ana M. Moreno, and Lawrence Peters

IN THE JANUARY/FEBRUARY 2014 
IEEE Software, the Voice of Evidence 
article, “Looking for the Holy Grail 
of Software Development,” reviewed 
the main practices that software proj-
ect managers should engage in to make 
success more likely.1 A complementary 
question is, what practices should they 
avoid to make success more likely? An-
swering this question will help current 
and future software project managers 
prevent, or at least mitigate, problematic 
scenarios that, if unresolved, will lead to 
additional project failures.

Antipatterns come into play for for-
mally describing dysfunctional ap-
proaches to problem solving and offer-
ing refactored solutions for successfully 
overcoming dysfunctions.2 In software 
development, antipatterns are related 
to different activities including software 
project management. What are these an-
tipatterns, and to what software project 
management issues are they related?

Software Project 
Management Antipatterns
We performed an extensive litera-
ture search according to a systematic- 
mapping-studies protocol,3 looking 
for information about software project 
management antipatterns in journals 
and conference publications over the last 
10 years. We searched � ve major data-
bases: IEEE Xplore, the ACM Portal, 
the Web of Knowledge, Google Scholar, 

and the Directory of Open Access Jour-
nals. The search string was

(anti-pattern OR antipattern OR 
anti pattern OR malpractice OR bad 
practice)

AND (software project management 
OR project management OR 
management)

We looked for not just simple prose 
descriptions of errors but also well- 
reported software project management 
antipatterns:

A properly documented antipattern 
describes a general form; the primary 
causes which led to the general form; 
symptoms describing how to recognize 
the general form; the consequences 
of the general form; and a re-factored 
solution describing how to change the 
antipattern into a healthier situation.4

Additionally, we looked for antipat-
terns related to the � ve software project 
management activities identi� ed in clas-
sical software project management lit-
erature:5,6 planning, scheduling, control-
ling, staf� ng, and motivating. Details of 
the literature review appear elsewhere.7

Surprisingly, our search didn’t pro-
vide signi� cant results. We then searched 
for books and other sources. We found 
three books4,8,9 and a few websites, 

VOICE OF EVIDENCE

Authorized licensed use limited to: ASU Library. Downloaded on March 14,2024 at 01:09:28 UTC from IEEE Xplore.  Restrictions apply. 



VOICE OF EVIDENCE

 MAY/JUNE 2015  |  IEEE SOFTWARE  41

mostly related to the antipatterns de-
tailed in those books. To complement 
the books’ information, we used the 
Portland Pattern Repository.10

Table 1 shows our consolidated 
list of antipatterns, which resulted 

from a detailed scrutiny of the litera-
ture we found.7

Antipattern Categories
We thought it would be interest-
ing to go deeper into the analysis of 

the previous antipatterns by dealing 
with the following questions:

• Which of the five software proj-
ect management activities are 
the antipatterns related to?

TA
B

L
E

 1 A consolidated list of software project management antipatterns.

No. Antipattern name Description Reference

1 Absentee Manager A manager who engages in avoidance behavior or is invisible for long time periods 9

2 All You Have Is a 
Hammer

One-dimensional management that uses the same techniques on all subordinates 
in all situations

9

3 Appointed Team The false assumption that a management-selected group of people will 
immediately become a team

10

4 The Brawl A project manager with no leadership or management experience 8

5 Detailitis Plan Excessive planning leading to complex schedules with a high level of detail, giving 
the false perception that the project is fully under control

4

6 The Domino Effect Moving critical resources between projects, blurring project boundaries 8

7 Dry Waterhole Specifying stringent requirements for a job when this isn’t strictly necessary, 
resulting in a limited pool of available talent

10

8 Fire Drill Months of boredom followed by demands for immediate delivery 4

9 Glass Case Plan Lack of tracking and updating of initial plans, assuming the plan is enough 4

10 Inflexible Plan Lack of flexible plans and processes 8

11 Irrational Management Irrational management decisions, habitual indecisiveness, and other negative 
management practices

4, 9

12 Leader Not Manager A manager with a vision (a leader) but no plan or management methodology 9

13 Micromanagement Excessive management involvement in tasks beyond their responsibility 8

14 Mushroom Management Isolating developers from end users, under the mistaken assumption that the 
requirements are stable and well understood by both the software team and end 
users at project inception

4, 9

15 Myopic Delivery Management insisting on the original delivery date even when reducing staff or 
funding

8

16 Process Disintegration Failing processes due to a decline in overall cooperation and morale 8

17 Project Mismanagement Lack of proper software project monitoring and control 4

18 Proletariat Hero The false assumption that coercion is an efficient way to increase productivity 9

19 Rising Upstart Superstars who can’t wait their time and want to skip learning phases 9

20 Road to Nowhere Lack of planning 9

21 Size Isn’t Everything Assuming developers are interchangeable and that the number of people working 
on a problem is inversely proportional to the development time

4, 8, 9

22 Ultimate Weapon Relying heavily on a superstar on the team 9

Authorized licensed use limited to: ASU Library. Downloaded on March 14,2024 at 01:09:28 UTC from IEEE Xplore.  Restrictions apply. 



VOICE OF EVIDENCE

42 IEEE SOFTWARE  |  W W W.COMPUTER.ORG/SOFT WARE   |  @IEEESOFT WARE

• Which general roles in a soft-
ware project (developers, manag-
ers, or customers) do the antipat-
terns impact?

• Are these antipatterns due to 
ignorance, sloth, pride, avarice 
(ambitious behaviors related to 
not only money but also people, 
project schedules, and delivery 
dates), or haste?

• What type of solution does each 
antipattern imply? Is the solution 
training-based, process-based, 
role-based (focusing on assigning 
responsibility to an individual or 
group), or technology-based?

We answered these questions on 
the basis of the literature and our 

experience and knowledge.7 Addi-
tionally, two senior software project 
managers at international software 
consulting companies assessed our 
categorizations through a detailed 
discussion with us. The categoriza-
tions might vary slightly depending 
on the actors, but our aim is to bring 
to practitioners’ attention the main 
factors related to each antipattern.

You can access and work with the 
categorization results at http://is.ls 
.fi.upm.es/research/spmantipatterns 
/home.html. A simple Web tool lets 
you sort the antipatterns according 
to the previous questions and filter 
them according to criteria (for ex-
ample, viewing all antipatterns due 
to ignorance). Table 2 summarizes 

this categorization (in some cases, a 
particular antipattern might be re-
lated to different criteria in the same 
category, so the percentages for each 
category might exceed 100 percent).

The software project management 
activities most impacted by antipat-
terns were, not surprisingly, those 
that last the longest throughout a 
project: controlling and motivating.

Investigating the roles most im-
pacted by antipatterns led to a para-
doxical discovery. In half of the an-
tipatterns, the manager experienced 
the greatest impact—managers who, 
in many cases and for various rea-
sons, had created the situation they 
were suffering from. This ironic rev-
elation should motivate project man-

TA
B

L
E

 2 Antipattern categories.

Category Criteria Antipattern no. (see Table 1) %

Impacted software product 
management activity

Controlling 1, 4,5, 8, 9, 11, 14, 15, 17 41

Motivating 1, 2, 4, 11, 13, 16, 18, 19, 22 41

Planning 10, 12, 20 14

Scheduling 5, 21 9

Staffing 3, 7 9

Impacted role Developer 4, 5, 6, 7, 9, 10, 16, 17, 21, 22 50

Manager 5, 6, 7, 9, 10, 16, 17, 19, 21, 22 50

Customer 8, 14, 15, 17 18

Root cause Ignorance 1, 3, 4, 6, 9, 10, 11, 12, 13, 14, 17, 18, 19, 21 64

Sloth 1, 10, 16, 17, 20, 22 27

Pride 13, 15, 22 14

Avarice 5, 7 9

Haste 8 5

Solution type Training 2, 3, 4, 6, 10, 11, 12, 13, 14, 17, 18, 19, 21 59

Process 5, 7, 8, 9, 10, 15, 20 32

Role 1, 13, 22 14

Technology 16 5

Authorized licensed use limited to: ASU Library. Downloaded on March 14,2024 at 01:09:28 UTC from IEEE Xplore.  Restrictions apply. 



VOICE OF EVIDENCE

 MAY/JUNE 2015  |  IEEE SOFTWARE  43

agers to avoid malpractices and en-
gage in continuous improvement and 
professional development.

As we expected, antipatterns also 
had a relevant effect on developers 
because they’re the main performers 
of the work orchestrated by project 
managers. Additionally, a notewor-
thy finding is that several antipat-
terns directly impacted customers. 
Although all the antipatterns rep-
resent undesirable scenarios, proj-
ect managers should particularly 
avoid those that significantly affect 
customers.

Software project managers often 
identify schedule pressure, a mani-
festation of haste, as a cause of proj-
ect troubles. However, we found that 
haste was the least common root 
cause of the antipatterns; the most 
common cause was ignorance (at-
tributable to the project manager’s 
lack of experience or training). This 
result supports the observation that 
staff is sometimes assigned to proj-
ect management without being fully 
qualified or trained.11 As Table 2 
shows, project management training 
can solve most of the antipatterns. 
So, the solution shouldn’t be to ter-
minate underperforming software 
project managers and hire new ones 
with potentially similar limitations. 
A much more powerful and long-
lasting solution is to invest in these 
managers, training them to enhance 
their skills and preparing aspiring 
managers for the future.

S oftware project managers 
are in a unique position to 
identify and avoid antipat-

terns. Here’s how.
First, identify specific principles 

and practices to tackle for the anti-
patterns, according to your develop-
ment process. For example, in agile 

project management, creating a gen-
eral release plan will help prevent 
Detailitist Plan, and the continuous 
delivery of working software will 
help prevent Fire Drill.

Second, at regularly scheduled 
points during a project, meet with 
your team and, as a group, identify 
what is and isn’t going well. Honesty 
and openness are essential. No one 
should be defensive. Avoid criticism.

Third, try to map the issues 
you’ve identified to the antipatterns 
in Table 1, keeping in mind that you 
might have identified new antipat-
terns. The antipatterns in Table 1 
might be only the tip of the iceberg.

Fourth, on the next project, avoid 
the antipatterns you’ve identified 
and repeat this process throughout 
the project and at its conclusion.

Finally, software project manag-
ers should receive training before 
they assume this role and during 
their tenure. In less than a decade, 
the knowledge about motivation, 
productivity, and team development 
has grown by leaps and bounds.12 
Keeping the software project man-
ager up to date will have benefits to-
day and for years to come.

References
 1. P. Ghazi, A.M. Moreno, and L.J. Peters, 

“Looking for the Holy Grail of Software 
Development,” IEEE Software, vol. 31, no. 
1, 2014, pp. 92–96.

 2. A. Koenig, “Patterns and Antipatterns,” J. 
Object-Oriented Programming, vol. 8, no. 
1, 1995, pp. 46–48.

 3. K. Petersen et al., “Systematic Mapping 
Studies in Software Engineering,” Proc. 
12th Int’l Conf. Evaluation and Assess-
ment in Software Eng. (EASE 08), 2008, 
pp. 68–77.

 4. W.J. Brown et al., AntiPatterns: Refactor-
ing Software, Architecture, and Projects in 
Crisis, John Wiley & Sons, 1998.

 5. L.J. Peters, Getting Results from Software 
Development Teams, Microsoft Press, 
2008.

 6. H.R. Kerzner, Project Management: A 
Systems Approach to Planning, Schedul-
ing, and Controlling, 11th ed., John Wiley 
& Sons, 2013.

 7. P. Silva, “Categorization of Anti-patterns 
in Software Project Management,” master’s 
thesis, Universidad Politécnica de Madrid, 
2014; http://oa.upm.es/32705.

 8. W.J. Brown, H.W. McCormick, and S.W. 
Thomas, AntiPatterns in Project Manage-
ment, John Wiley & Sons, 2000.

 9. P.A. Laplante and C.J. Neill, Antipatterns: 
Identification, Refactoring, and Manage-
ment, Taylor & Francis, 2005.

 10. “Management Anti Pattern Roadmap,” 
Portland Pattern Repository, 2014; http://
c2.com/cgi/wiki?ManagementAntiPattern
RoadMap.

 11. R. Katz, “Motivating Technical Profession-
als Today,” IEEE Eng. Management Rev., 
vol. 41, no. 1, 2013, pp. 28–38.

 12. L.J. Peters, “Managing Software Projects: 
On the Edge of Chaos, from Antipatterns 
to Success,” Kindle ebook, Software Con-
sultants Int’l, 2015.

PEDRO SILVA is an embedded-software 
engineer and a recent master’s graduate at 
Universidad Politécnica de Madrid. Contact him 
at pedro.pdesilva@gmail.com

ANA M. MORENO is a full professor at Uni-
versidad Politécnica de Madrid. Contact her at 
ammoreno@fi.upm.es.

LAWRENCE PETERS is a project manager, 
consultant, and part-time lecturer at Univer-
sidad Politécnica de Madrid. Contact him at 
ljpeters42@gmail.com

visit  us online

computer.org 
/software

s3voe.indd   43 4/2/15   1:11 PM
Authorized licensed use limited to: ASU Library. Downloaded on March 14,2024 at 01:09:28 UTC from IEEE Xplore.  Restrictions apply. 


