OPERATIONS AND MAINTENANCE

Debunking Agile Myths

by Dick Carlson

It is often interesting and sometimes amusing how often people believe “facts” that
are not true. Misinformation, confusion, and a lack of practical experience create
challenging barriers to the acceptance and application of Agile and Lean, to soft-
ware and systems engineering techniques. Since the Agile Manifesto for Software
Development was developed in 2001, large and small companies alike have
experienced an increase in productivity, improvements in employee satisfaction, and
higher customer satisfaction when Agile practices are used. [1]

This article discusses and analyzes 10 of the most common misconceptions
about Agile practices and techniques and identifies real-world examples that
debunk these misconceptions. Included are actual examples of successful applica-
tions of Agile that have resulted in the development and deployment of deliverable
software and other products within a wide range of businesses and industries.

The misconceptions to be addressed in this article include:
1. Agile methods are undisciplined and not measurable.
2. Agile methods have no project management.
3. Agile methods apply only to software development.
4. Agile methods have no documentation.
5. Agile methods have no requirements.
6. Agile methods only work with small co-located teams.
7. Agile methods do not include planning.
8. Agile only works for small project teams.
9. Agile development is not predictable.
10. Agile development does not scale.

AUTHOR'S NOTE: The company's name is protected by a very strict
code of ethics regarding specific business practices and the identification
of its customers. Therefore, references to the company, its customers, and
the name of any program cannot be disclosed.

My apology to those readers who believe that a more important misconception
has been omitted in order to include a lesser misconception. This list is based on
my own personal experiences and opinions.

Applications of Agile

The application of Agile to projects has resulted in higher
success rates over many years because of its specific prac-
tices and principles, including:

—Simplicity.

—Short iterations.

—Embracing change.

—A sustainable pace.

—Customer satisfaction.

—Verifiable collaboration.

—Daily stand-up meetings.

—Prioritizing requirements.

—Continuous improvement.

—Time-boxed work sessions.

—Close customer collaboration.

—Frequent planning and estimating.

—Frequent releases of working features.

—Product demonstrations and artifact reviews.

—Motivated, self-organized and cross-functional teams.

32 CrossTalk May/June 2017

Agile Myths

The following are myths collected from my personal experi-
ence and from the experience of others. All are presented in a
relative order of popularity.

1. Agile methods are undisciplined and
not measurable.

This myth is among the most common and the most damaging
when attempting to explain an Agile approach to an uninformed
executive or customer. Though many people attempt to find
discipline and predictability in traditional projects, these projects
often involve extensive processes, excessive meetings, and
extensive data management that do not achieve the desired
discipline and predictability.

Agile projects use a different approach that involves a
disciplined method with a diminutive focus. Some people are
unaware that a “disciplined method” is involved. Agile projects
are conducted through a series of short iterations (aka “sprints”),
each of which requires teams to:

—Establish a goal or set of goals.

—Make a plan and determine what to build during each sprint.

—Estimate the effort required to build each item.

—Decompose the items into quantifiable tasks.

—Establish a team commitment to sprint goals.

This means that team members, sponsors and managers
must commit to the sprint and that team members are expected
to maintain focus throughout the duration of the sprint. Now this
is discipline!

The evidence debunking this myth includes the completion
of a multitude of projects that have implemented Agile rigor-
ously with positive, measurable results. Further evidence in the
VersionOne 10th Annual State of Agile Survey revealed that the
top three benefits of Agile include:

1. An ability to manage changing priorities: 87 percent.

2. Increased team productivity: 85 percent.

3. Improved project visibility (transparency): 84 percent.

The survey also showed that the leading causes of failed
Agile projects during 2015 were:

1. A company philosophy or culture at odds with core Agile
values: 46 percent,

2. A lack of experience using Agile methods: 41 percent.

3. An absence of management support: 38 percent.

Three of the leading reasons indicated by “How Success is
Measured with Agile Methods” included:

1. On-time delivery: 58 percent.

2. Product quality: 48 percent.

3. Customer/user satisfaction: 46 percent.

2. Agile methods have no project management.
This myth was likely formed by those unfamiliar with Scrum,
which is an Agile project management approach that focuses
on delivering the highest business value first. Scrum is imple-
mented through a series of short sprints (two to four weeks in
duration), with each sprint producing an increment of potential
functionality. After each sprint, decisions are made to either

release the product as is or to continue enhancing the product
until it is ready to be delivered or deployed. Scrum is simple and
straightforward, and its activities, practices and rules are few
and easy to learn. Scrum minimizes project planning because
team members select their own work and self-organize.

While most projects have a project manager or someone re-
sponsible for project requirements and expenditures, the evidence
debunking this myth is supported by the global implementation
of Scrum. Scrum is an Agile project management framework that
includes three roles (the development team, the product owner,
and the Scrum master), four activities or working sessions (sprint
planning, the daily Scrum or standup, the sprint review, and the
sprint retrospective), and a few work products including the prod-
uct backlog, sprint backlog, task board, burn-up chart, operational
feature, and/or working software. The Scrum master facilitates all
working sessions, arranges facilities, ensures all team members
are fully functional and productive, and makes certain that every-
one follows the agreed-upon Scrum process. The product owner
collaborates closely with stakeholders for release planning and
manages the product vision, project requirements, product road
map, and product backlog. The team plans for, builds and man-
ages chosen deliverables during each sprint.

Further, problematic processes do not achieve wide accep-
tance. Agile methods continue to receive wider acceptance.

3. Agile methods apply only to software development
This myth is most likely based on a combination of the princi-
ples expressed in th e Agile Manifesto for Software Development

used in most Agile projects. [2] Only three of these principles
apply specifically to software development. The remaining nine
principles are generic and apply to just about any kind of project,
circumstance, or situation that must be managed. In effect, the
remaining principles can be used in anything we do. Whether they
are applied on the job, at home, or in our communities, a majority
of Agile principles can be used in almost any scenario.

One case with evidence debunking this myth is how quickly
a five-day, comprehensive Agile-training course was developed
in 60 days when it was originally anticipated to take six months.
The project started with six people developing a 12-module
course. After the first few weeks, the training deck contained
more than 550 slides, many of which were redundant. As most
team members were pulled back into other projects and support
diminished, it became apparent that our small team of three
had to rethink its approach. The solution was a no-brainer. We
applied Scrum practices that reduced the six-month effort to 60
days and reduced the training deck from more than 550 slides
to 350 slides. When presented, the course was very effective,
and the course developers and instructors received kudos for
the quality of the training.

Another example is a large project that used the Scrum
project management approach. At the beginning of the project,
it had failed to create several critically needed product backlogs
across several engineering domains that should have contained
enough user stories to define the operational capabilities and
functionality of the application under development. Thus, several
domain-related sub-projects were established. Each of these
sub-projects planned and executed a series of short sprints,

OPERATIONS AND MAINTENANCE

each with a goal to develop requirements in user story format
and create product backlogs so software development teams
could develop software and write tests based on those require-
ments. The results of this effort produced hundreds of user
stories that were written and prioritized in each of the product
backlogs so that the software development teams were able to
use the backlog to build a wide array of functionality.

Another example is a project on a large defense program that
was chartered to develop detailed specifications for equipment
racks that was outsourced to an offshore company to build test
benches. Management knew that projects of this type typically
ran over budget and failed to meet schedules, so they looked
to the software engineering effort that was using Scrum to
better manage the project. Project stakeholders decided to use
a seasoned Scrum master and identified a product owner who
possessed the requisite technical domain knowledge, under-
stood the challenges of the project, and was available to support
the project's life cycle that was limited to 12 months. The result
was that the project finished ahead of schedule by four months
and saved 20 percent of the projected costs.

4. Agile methods have no documentation

This myth was formed from a misunderstanding of the Agile
Manifesto principle that states, “Working software over compre-
hensive documentation! To some, this means “no documenta-
tion,” but to others it means that documentation specified by
contract will be developed and delivered as agreed upon, but
will be developed incrementally — just like other work products
specified in the contract.

Evidence that debunks this myth comes from hundreds of
projects where contractual documentation was developed and
delivered (or is in development and will be delivered). These
documents follow the same life cycle pattern as all other project
deliverables except that they are delivered incrementally to avoid
the risk of developing product features that may exceed cost
thresholds or never be used.

Scrum is used to manage hundreds of projects that are
required to develop suites of documentation, including software
and systems requirements specifications, software and system
design specifications, software test descriptions, system valida-
tion descriptions, software and system user manuals, training
manuals, and other documents. This is not unusual, and most
of these projects are capable of preparing these documents
incrementally while the products are being built.

5. Agile methods have no requirements

This myth may be a consequence of misunderstanding the
Agile Manifesto, or it may have been originated by someone
with limited software or system development experience.

The evidence against this myth is that all software and system
development methods start with the definition and development
of requirements. After all, what does one build if there are no
requirements? For the most part, Agile projects — especially those
implementing Scrum or Extreme Programming — convert known
requirements into user stories, which are descriptions of desired
functionality or an aspect of a feature told from the perspective
of the user or the customer. Stories focus on the “what’ not the

CrossTalk—May/June 2017

33

OPERATIONS AND MAINTENANCE

Agile Systems Engineering Activities

I Requirements
Iterations

“how,” and shift the center of attention from writing to discussion.
Stories provide a quick way of handling customer requirements
without having to create formalized requirements documents and
without the administrative overhead required to maintain them.

User stories are meant to collect performance behavior and
to be able to respond to changes in requirements faster, more
accurately, and with significantly less overhead. User stories
are controlled and managed in a product backlog, which is a
prioritized list of requirements in a story format. During sprint
planning, the team selects the customer’s highest priority items
from the product backlog to be completed during the sprint.
Selected backlog items are then decomposed into quantifiable
tasks, completed by team members, and verified as complete
by the product owner. User stories also give the advantage of
highlighting the value of a requirement or feature. Knowing the
value of each story assists with ranking the stories.

There are many projects that have used Scrum to define
and develop requirements within a short time period in order to
avoid costly program delays. Many projects begin with immense
challenges where customers require short product turnarounds
and teams struggle with the logistics of project preparations,
including determining the appropriate stakeholders (such as
domain and subject matter experts), staffing, facilities, timing,
requirements resources, and so on. The application of Scrum
during project execution greatly increases the potential of proj-
ect success by setting up and synchronizing multiple teams to
define and develop requirements with software and product de-
velopment teams. A viable approach to the execution of Scrum
on such projects is depicted in the diagram below.

Agile Software Development Activities

Development
Iterations

Internal
design
review

Identify,
gather,
define, and

requirements
(in story format)

1
1
1
[}
1
1
1
1 develop
1
1
1
1
1
1

Stories selected and
estimated by team

and need

Figure 1.

based on importance

Col lled and M; qd

Design

Stories Sprint

Backlog

Product
Backlog

Prioritized

Stories broken into
tasks and estimated

Functional
system
integration

Unit
integration

Acceptance
testing

6. Agile methods only work with small,
co-located teams

This myth was likely started by people who cannot imagine what
it would be like if project members were dispersed or distributed.
Actually, the attitudes of some of the original Agile Manifesto
authors believed this myth at first. Most have learned through
personal experience. With the tightening of travel budgets and
popularity of working with offshore or otherwise distributed teams,
this is a reality being lived and experienced every day for many
projects around the globe. Situations vary, but difficulties that come
with distributed teams are similar regardless of the circumstances.

34 CrossTalk May/June 2017

For example, all distributed teams face unique challenges that arise
from the loss of rich social and physical interactions. Another chal-
lenging aspect is the transition from a face-to-face environment
to an environment where video conferencing, instant messaging,
email, shared work areas (repositories), shared calendars, and
workflow and collaboration tools replace the convenience of a
physical working environment. In spite of these challenges, we find
ways to adapt and perform.

At one time this myth was more true than false. The Agile
Manifesto was established in February 2001. In the 16 years
that have passed since then, our communication capabilities
have increased immensely. The capabilities of WebEx, Skype,
and GoToMeeting barely existed in 2001. We have learned and
experienced much since 2001. While face-to-face communication
remains the best method, new tools make telecommuting feasible
and cost effective. A team in Burbank, California, can work with a
team in Bangalore, India. It has been done effectively.

7. Agile methods do not include planning

This myth may come from a major misunderstanding of the
Agile Manifesto, or perhaps from a rumor of an Agile project gone
bad. Were backlogs and parking lots created? Were burn-down
and burn-up charts used? Were daily stand-ups held? All of these
artifacts and activities are part of planning and controlling.

Rumors result when those who do not practice Agile or do
not understand it form negative opinions of activities without
empirical experience. Poor Agile projects include those that
failed to yield favorable results.

Evidence against this myth is in the application of Scrum
on Agile projects. Scrum includes a significant planning effort
that begins with the creation of a vision, a product road map,
some release planning, and some sprint planning. Creation
of the vision, product road map, and release planning are
conducted during Sprint Zero (aka Iteration Zero, initial plan-
ning, or something similar) prior to any project activity and is
not usually time-boxed like other Scrum activities. Sprint Zero
is a term meaning a planning session that takes place before
project execution. Sprint Zero is executed at a high level and
may include the customer, end-users, and select project and
support personnel.

Sprint planning is conducted on the first day of every sprint
and is typically time-boxed at four to eight hours. In sprint plan-
ning, the product owner and the team determine what must
be completed during the sprint. The team estimates all items
targeted for a sprint's completion, selects a certain number
of product backlog items, then determines how to build those
items during the sprint. Clearly, this is planning!

8. Agile only works for small project teams

This myth is unfounded as projects using Agile practices are
conducted every day around the world by both small teams and,
many times, by much larger teams.

The evidence against this myth is the lack of knowledge
and empirical experience on the part of the myth’s originators.
The Scrum framework recommends small teams of five to nine
self-organized and cross-functional people who possess soft-
ware designing, coding, and testing skills. Teams staffed with

10 to 15 systems and software engineers are quite common,
although it is recommended that larger teams be divided into
smaller, synchronized teams.

Further evidence of this unconfirmed myth can be explained
by the Disciplined Agile Delivery (DAD) life cycle model, where
the focus is on the delivery portion of the system life cycle from
a project's beginning to its release. [3]

9. Agile development is not predictable

This myth is debunked by the fact that many of the teams
that use Agile practices and principles every day experience a
significant increase in productivity and work output due to their
strong commitment and focus. Regardless of the challenge or
product being developed, planned, and estimated, the end goal
is always the same — a potential increment of working software
at the end of each sprint.

Evidence debunking this myth includes the following:

—Agile efficiently and effectively replaces detailed, specu-
lative plans with high-level, feature-driven plans that
acknowledge the inherent complexity and uncertainty of
software development projects.

—Ongoing reconciliation of actual effort to original plans is
replaced with incremental planning and re-planning with
smaller granularity throughout development activities.
Reduced granularity results in increased insight.

—Agile development operates in a rapid, iterative fashion,
so valuable historical data quickly emerges for supporting
both short- and long-term planning.

OPERATIONS AND MAINTENANCE

—The use of simple charts and metrics that show velocity
and task burn-down that emphasize visual and actionable
effects convey as much or more useful information than
PERT or Gantt charts.

10. Agile development does not scale

This myth does not consider that, generally speaking, software
development has scaling issues. Evidence against this myth is
that this is not a method-specific problem. The larger a project's
scope, the greater the probability of failure; the greater the num-
ber of people involved in a project, the greater the communication
complexity and, therefore, the risk. Agile development accepts
these realities and recommends smaller projects, shorter delivery
times, and smaller teams. Smaller teams have proven to be much
more productive than larger teams.

Agile methods promote taking large projects and decompos-
ing them into a coordinated series of smaller projects staffed by
smaller, motivated, self-organized, and cross-functional teams.
Work output is integrated at least every sprint in order to reduce
risk and ensure functional and technical compatibility. The
recommendation is to take, where possible, a large project and
decompose it into smaller subprojects. Creating these smaller
subprojects increases the probability of success.

For many years, a significant number of Agile projects
involving hundreds of people have been conducted by mul-
tiple teams, in multiple locations, and across multiple time zones
while experiencing a high degree of confidence in the ability of
the Agile development process to scale appropriately. If a com-

° ° ° .
Hiring Expertis e |l

civilians (U.S. Citizenship
Required). Benefits include paid
vacation, health care plans, matching
retirement fund, tuition assistance,
paid time for fitness activities, and
workforce stability with 150 positions
added each year over the last 5 years.

Become part of the best and brightest!

Hill Air Force Base is located close to the
Wasatch and Uinta mountains with skiing, hiking,
biking, boating, golfing, and many other
recreational activities just a few minutes away.

309SMXG.Recruiting@us.af.mil
or call (801) 777-9828

www.facebook.com/
309SoftwareMaintenanceGroup

OPERATIONS AND MAINTENANCE

pany has a very large, complex problem to solve, there are many
reasons to prefer the use of an Agile approach to expose risks
quickly, demonstrate business value early, and institutionalize a
highly disciplined approach to software development.

For more than three years, | assisted and coached a very large
program within a very large, multi-national company. My assis-
tance helped to transform the company’s traditional development
methods to Agile. The results were a reduction in schedule by more
than 60 percent and a cost reduction of just under 40 percent. The
organization consisted of 5,000 personnel that included software
engineers, system engineers, and a large group of highly skilled
assemblers and construction technicians.

Conclusion

As previously stated, the aforementioned myths are collections of
Agile myths that have been debunked through personal experience.
Further searches on this topic will reveal different myths reported
by others in the field. To recap the myths reported in this article:

“Agile methods are undisciplined and not measurable” is dis-
proved by the multitude of projects, past and present, that depend
on commitment and focus on the part of everyone involved. It is also
disproved by measured evidence in terms of cost and time savings.

‘Agile methods have no project management” is disproved by
the fact that everyone committed to an Agile project is taught to
be self-managing. It is also disproved by the many projects that
are using Scrum as a project management approach.

“Agile methods apply only to software development” is
disproved by the many projects around the world that are using
Scrum to manage the development of products unrelated to

REFERENCES

Manifesto for Agile Software Development (http://agilemanifesto.org/).

Scaled Agile (http://www.scaledagile.com).

Scott Ambler (http:/ /www.ambysoft.com/scottAmbler.html).

Software Engineering Institute, Carnegie Mellon University.

10th Annual State of Agile Survey, VersionOne, 2015.

Systems & Software Technology Conference (SSTC), 2011, Salt Lake City, Utah, May 2011

National Defense Industry Association (NDIA) Systems Engineering Conference, October 2010, San Diego, California.
Systems & Software Technology Conference (SSTC), 2010, Salt Lake City, Utah, April 2010.

Recommended Reading:

“Agile Software Development with Scrum,” Ken Schwaber and Mike Beedle, Prentice Hall, 2001.
“Questioning Extreme Programming,” Pete McBreen, Addison-Wesley, 2003.

“Death March,” Edward Yourdon, Prentice Hall, 2nd edition, 2003.

“Agile & Iterative Development,” Craig Larman, Addison-Wesley, 2004.

“Agile Project Management,” Jim Highsmith, Addison-Wesley, 2004.

“Implementing Lean Software Development,” Mary and Tom Poppendieck, Addison-Wesley, 2007.
“Succeeding with Agile: Software Development Using Scrum,” Mike Cohn, Addison-Wesley, 2010.

1. The Agile Manifesto appears on the Agile Alliance website at http:/ /agilemanifesto.org/

2. http:/ /www.agilemanifesto.org/principles.html

3. The DAD model was hypothesized by Scott Ambler, who believed that Agile needed to extend beyond
construction and into production. https:/ /www.ibm.com/developerworks/community/blogs/ambler/entry/
disciplined_agile_delivery_dad_lifecycle14?lang=en

36 CrossTalk May/June 2017

software. | have coached and facilitated numerous teams that
produced nonsoftware products.

“Agile methods have no documentation” is disproved by the fact
that documentation is produced on virtually all projects, regardless
of whether it is contract-specified or project-generated. Essen-
tially all of the teams that | have coached and facilitated over that
last 15 years have produced value-added documentation.

‘Agile methods have no requirements” is disproved by its
ludicrous implications. Products are not developed through
osmosis; products are developed from creative thinking that is
defined and developed through extensive analysis and docu-
mented as specific requirements.

‘Agile methods only work with small, co-located teams” is
debunked by the fact that there are hundreds of Agile projects
functioning with geographically distributed team members. | have
coached and facilitated many teams that were not co-located.

‘Agile methods do not include planning” is debunked through
planning sessions that take place at the start of every sprint,
during the daily stand-ups, and prior to project start during
Sprint Zero, where all project and release planning activities are
conducted. Projects that do not plan are doomed to fail.

“Agile only works for small project teams” is debunked by my own
experience. | have coached and facilitated teams as small as two
people and as large as 13 people. Very small teams are productive
but cannot complete as much as larger teams can. However, | main-
tain through experience that teams of five to seven members are by
far the most productive when developing software products.

“Agile development is not predictable” is debunked by evidence
of progress and success throughout an Agile project's life cycle
through rigorous, rapid, and incremental planning, iterative and
evolutionary development, and the application of simple metrics.

‘Agile development does not scale” is debunked by the
evidence that smaller teams are more productive than larger
teams, and through Agile’s highly collaborative na-ture, identi-
fies issues and risks early and drastically reduces their impacts
through viable mitigation strategies

ABOUT THE AUTHOR

. ‘. Dick Carlson has a Bachelor of Science
degree in business management. He has held
certifications as a Scrum Professional, Scrum
Master, and Scrum Product Owner, and in
Lean-Agile Project Management. He is an
accomplished software engineering process
analyst, and has shared successful experi-
ences of Agile, Lean, and Scrum implementa-
tion at conferences, workshops, and symposia.
Dick’s engineering career spans more than
40 years, and he has taught courses in
mathematics, electronics, CMMI, configuration
management, data management, Agile, Lean,
and Scrum for more than 30 years.
dcarlson@iascar.us

